Value-added Assessment: Teacher Training Designed to Improve Student Achievement

Laurie Ruberg, Ph.D.
Karen Chen, Ph.D.
Judy Martin
Center for Educational Technologies® (CET)
Wheeling Jesuit University

This presentation was partially funded by the West Virginia Space Grant Consortium
• What influence do family and socio-economic backgrounds have on student learning?

• Can effective teaching have a stronger influence on student achievement than demographic factors?
Relevance of Study

- 85% of the 149 schools involved in this evaluation are classified as high poverty schools.
- 78% of the schools serve a student population with a high percentage of minority students.
- Recent research reports indicate that the gap between high-performing teachers and low-performing students continues to increase.
- This evaluation assesses the outcome data associated with the implementing of a theoretically-based professional development service and utilization model designed to help teachers and students situated at high need, low performing schools.
Background

• The NASA Explorer Schools (NES) project provides curriculum materials, professional development, and technology support for low performing, socioeconomically challenged, ethnically diverse schools serving grades 4-9. The focus of NASA’s support is on improving teacher abilities and student achievement in science, technology, engineering, and mathematics (STEM) areas.
Purpose:

• This report integrates the results of five previous interim reports and provides an impact analysis of the first three years of the NASA Explorer Schools intervention. This study reports the results of data collected from the start of the project in 2003 through the spring 2006.
Setting:

- This study includes NASA Explorer Schools participating in the program between 2003 and 2006. Schools from all 50 states plus Puerto Rico are represented in this sample group, and the intervention is carried out on a regional level through 10 participating NASA field centers located in:
 - Alabama (1),
 - Florida (1),
 - Virginia (1),
 - Ohio (1), and
 - California (3),
 - Maryland (1),
 - Mississippi (1),
 - Texas (1).
Study Sample:

• 149 schools, 596 teachers
• 149 administrators, and
• 135,396 students

were involved in this program in the 2003 to 2006 period that is the focus of this study
Intervention:

- The NES project provides a three-year partnership between NASA and the participating schools to offer professional development, funding for technology resources, STEM-related curriculum activities, materials, and expertise, and individual consultation to help teacher and administrator teams achieve the academic goals outlined in their NES sustainability and implementation plans.
Research Method: Examines the first three years of the NASA Explorer Schools project using a blended method approach combines qualitative and quantitative methods:

- applies a theory-based research design, a cluster-based, randomly selected sample of case study school implementations
- compares case study school analysis to the theoretical guidelines of anticipated outcomes and practices
- student achievement scores at participating schools are compared with standing in their district and state after one, two, three, and four (one-year post completion) years of participation
- pre-/posttests are compared to examine the impact of the STEM education intervention on school curriculum, teacher professional development, technology integration, family involvement, and student interest and achievement
Value-added Assessment: Teacher Training Designed to Improve Student Achievement

Goals

a. Provide all students the opportunity to explore STEM topics in a variety of engaging and interactive NASA contexts that apply multiple uses of advanced technologies to increase student interest, participation, knowledge about careers, and ability to apply STEM to their knowledge and abilities.

b. Provide educators with sustained professional development, unique STEM-based teaching and collaborative tools, digital content resources, and compelling NASA contextual-based teaching applications that align with national standards for targeted content areas.

c. Build strong family involvement within NES by facilitating NES teamwork with NASA personnel and other partners to develop and implement strategic and implementation plans for staff and students that promote and support the use of NASA content and programs, local NES team needs in STEM education, and family (caregivers and community partners) member participation in their children's education.

Theoretical Constructs

Outcomes

1. Participation and professional growth of educators in science?
2. Assistance for and technology use by educators in schools with high populations of underserved students?
3. Family involvement in children's learning?
4. Student interest and participation in science, technology, engineering, and mathematics?
5. Student knowledge about careers in science, technology, engineering, and mathematics?
6. Student ability to apply science, technology, engineering, and mathematics concepts and skills in meaningful ways?
Value-added Assessment: Teacher Training Designed to Improve Student Achievement

Template Scores for Intervention Outcomes

- Outcome 1: 48%
- Outcome 2: 16%
- Outcome 3: 10%
- Outcome 4: 9%
- Outcome 5: 9%
- Outcome 6: 8%
Data Analysis:

- The analysis uses a blended methods research design. The quantitative analysis primarily conducted on survey data included descriptive and inferential statistics, including mixed design analysis of variance and regression modeling analysis.
- The qualitative data analysis followed procedures to verify interrater reliability and triangulation of data by comparing similar data questions across several instruments.
• **Findings:** The qualitative analysis and regression modeling reinforced findings that student achievement gains were most strongly associated with evidence of applying teaching instructional strategies to:

- support inquiry,
- teacher knowledge gains in STEM content and pedagogy,
- teachers integration of intervention into district/school curriculum, and
- use of educational technologies to support classroom instruction.
Value-added Assessment: Teacher Training Designed to Improve Student Achievement

*indicates a significant difference between 2003 and 2004 cohorts with p<.05.

Center for Educational Technologies, NASA-sponsored Classroom of the Future, Wheeling Jesuit University
How do you think family participation in NASA activities has affected your students this year?
Value-added Assessment: Teacher Training Designed to Improve Student Achievement

How Good They Are at the Following STEM Related Activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Pretest</th>
<th>Posttest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing a Hypothesis*</td>
<td>3.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Making Observations*</td>
<td>3.4</td>
<td>3.6</td>
</tr>
<tr>
<td>Using Computers with Science Data*</td>
<td>3.5</td>
<td>3.7</td>
</tr>
<tr>
<td>Using Math to Explore Solutions to Problems</td>
<td>3.7</td>
<td>3.8</td>
</tr>
</tbody>
</table>

*indicates a significant difference between the pre and posttest.

Note: The survey data is based on 580 matched 4-6th graders (representing 38 teachers)

Center for Educational Technologies, NASA-sponsored Classroom of the Future, Wheeling Jesuit University
Grades 7-9 students’ perceptions of how they think of math and science comparing to other subjects and how they will do in math and science

When taking a math test you have studied for, how well do you do?

How well have you done in math in the past?

In general, how hard is science for you?

Compared to other school subjects... how hard is science for you?

In general, how hard is math for you?

Compared to other school subjects... how hard is math for you?

Center for Educational Technologies, NASA-sponsored Classroom of the Future, Wheeling Jesuit University
Correlation of student exposure to NASA Material with other STEM-related variables

<table>
<thead>
<tr>
<th>Question</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>“How often do you or your teachers use NASA materials in geography?”</td>
<td>(.372**)</td>
</tr>
<tr>
<td>(.372**) How much I like math</td>
<td></td>
</tr>
<tr>
<td>(.409**) How much I like science</td>
<td></td>
</tr>
<tr>
<td>(.315*) How good I am at using computers with science data</td>
<td></td>
</tr>
<tr>
<td>(.312*) How good I am at using math to explore solutions to problems</td>
<td></td>
</tr>
<tr>
<td>(.646**) How often as an adult I think I will use science to interpret news stories (grades 7-9 only)</td>
<td></td>
</tr>
<tr>
<td>“How often do you or your teachers use NASA materials in science?”</td>
<td>(.369**)</td>
</tr>
<tr>
<td>(.369**) How much I like geography</td>
<td></td>
</tr>
<tr>
<td>(.481**) How much I like science</td>
<td></td>
</tr>
<tr>
<td>(.331*) How good I am at using computers with science data</td>
<td></td>
</tr>
<tr>
<td>(.406**) How good I am at presenting the results of an investigation or project to the class</td>
<td></td>
</tr>
<tr>
<td>“How often do you or your teachers use NASA materials in technology education?”</td>
<td>(.418**)</td>
</tr>
<tr>
<td>(.418**) How much I like geography</td>
<td></td>
</tr>
<tr>
<td>(.521**) How much I like science</td>
<td></td>
</tr>
<tr>
<td>(.426**) How much I know about technology education or engineering (grades 7-9 only)</td>
<td></td>
</tr>
<tr>
<td>(.334*) How good I am at using computers with science data</td>
<td></td>
</tr>
<tr>
<td>(.313*) How good I am at using math to explore solutions to problems</td>
<td></td>
</tr>
<tr>
<td>(.569**) How good I am at presenting the results of an investigation or project to the class</td>
<td></td>
</tr>
</tbody>
</table>
Value-added Assessment: Teacher Training Designed to Improve Student Achievement

NES Schools AYP

- Numbers of NES schools meeting AYP in 2002-2003 year
- Numbers of NES schools meeting AYP in 2003-2004 year
- Numbers of NES schools meeting AYP in 2004-2005 year
- Numbers of NES schools meeting AYP in 2005-2006 year
- Numbers of NES schools become magnet schools

Schools meeting AYP before and after NES intervention

Center for Educational Technologies, NASA-sponsored Classroom of the Future, Wheeling Jesuit University
Discussion:

• The field center implementation of the NES project was improved and made more coherent over the course of the three-year evaluation. Teachers indicated that they highly value how the NES workshops helped them grow personally and professionally.

• Schools that met NES expectations for implementation showed positive impact on teacher growth, integration of educational technology, family involvement, and student interest and achievement in STEM-related topics and careers.
Discussion

• While challenges faced by underachieving schools participating in NES were not erased, these schools achieved significant areas of success. The number of schools meeting their annual yearly progress goals doubled from 2003 to 2006 for all cohort groups.
• The case study analysis provides detailed school-based factors that either contribute to or impede successful implementation of NES as a comprehensive STEM-related intervention. The quantitative analysis from survey data supported and in some cases further defined the trends identified in the cross-case analysis.
Areas to be further refined and expanded:

- Involve students in the process of generating and evaluating scientific evidence.
- Help teachers be able to model scientific reasoning for students.
- Help teachers know how to recognize and change common student misconceptions.
- Help teachers improve their pedagogical understanding of content so that they can document the impact of specific teaching strategies on student learning.
- Help teachers work as a team to plan, review, and connect NES implementation to specific standards for student achievement.
- Prepare teachers so that they can integrate student use of technology within STEM content instruction.
- Support student participation in the scientific inquiry process.
• For further information contact:
 Laurie Ruberg, Ph.D.
 Associate Director
 CET/WJU
 lruberg@cet.edu
 http://www.cet.edu/research/nes.html